Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Acta Physiologica Sinica ; (6): 91-98, 2023.
Article in Chinese | WPRIM | ID: wpr-970109

ABSTRACT

The ovary is the reproductive organ of female mammals, which is responsible for producing mature eggs and secreting sex hormones. The regulation of ovarian function involves the ordered activation and repression of genes related to cell growth and differentiation. In recent years, it has been found that histone posttranslational modification can affect DNA replication, damage repair and gene transcriptional activity. Some regulatory enzymes mediating histone modification are co-activators or co-inhibitors associated with transcription factors, which play important roles in the regulation of ovarian function and the development of ovary-related diseases. Therefore, this review outlines the dynamic patterns of common histone modifications (mainly acetylation and methylation) during the reproductive cycle and their regulation of gene expression for important molecular events, focusing on the mechanisms of follicle development and sex hormone secretion and function. For example, the specific dynamics of histone acetylation are important for the arrest and resumption of meiosis in oocytes, while histone (especially H3K4) methylation affects the maturation of oocytes by regulating their chromatin transcriptional activity and meiotic progression. Besides, histone acetylation or methylation can also promote the synthesis and secretion of steroid hormones before ovulation. Finally, the abnormal histone posttranslational modifications in the development of two common ovarian diseases (premature ovarian insufficiency and polycystic ovary syndrome) are briefly described. It will provide a reference basis for understanding the complex regulation mechanism of ovarian function and further exploring the potential therapeutic targets of related diseases.


Subject(s)
Female , Animals , Histone Code , Histones , Protein Processing, Post-Translational , Ovary , Oocytes , Mammals
2.
Protein & Cell ; (12): 7-28, 2021.
Article in English | WPRIM | ID: wpr-880895

ABSTRACT

Mammalian fertilization begins with the fusion of two specialized gametes, followed by major epigenetic remodeling leading to the formation of a totipotent embryo. During the development of the pre-implantation embryo, precise reprogramming progress is a prerequisite for avoiding developmental defects or embryonic lethality, but the underlying molecular mechanisms remain elusive. For the past few years, unprecedented breakthroughs have been made in mapping the regulatory network of dynamic epigenomes during mammalian early embryo development, taking advantage of multiple advances and innovations in low-input genome-wide chromatin analysis technologies. The aim of this review is to highlight the most recent progress in understanding the mechanisms of epigenetic remodeling during early embryogenesis in mammals, including DNA methylation, histone modifications, chromatin accessibility and 3D chromatin organization.


Subject(s)
Animals , Female , Male , Mice , Chromatin Assembly and Disassembly , DNA Methylation , DNA Transposable Elements , Embryo, Mammalian , Embryonic Development/genetics , Epigenesis, Genetic , Epigenome , Fertilization/physiology , Gene Expression Regulation, Developmental , Histone Code , Histones/metabolism , Oocytes/metabolism , Spermatozoa/metabolism
4.
Genomics, Proteomics & Bioinformatics ; (4): 140-153, 2019.
Article in English | WPRIM | ID: wpr-772940

ABSTRACT

Enhancers activate transcription in a distance-, orientation-, and position-independent manner, which makes them difficult to be identified. Self-transcribing active regulatory region sequencing (STARR-seq) measures the enhancer activity of millions of DNA fragments in parallel. Here we used STARR-seq to generate a quantitative global map of rice enhancers. Most enhancers were mapped within genes, especially at the 5' untranslated regions (5'UTR) and in coding sequences. Enhancers were also frequently mapped proximal to silent and lowly-expressed genes in transposable element (TE)-rich regions. Analysis of the epigenetic features of enhancers at their endogenous loci revealed that most enhancers do not co-localize with DNase I hypersensitive sites (DHSs) and lack the enhancer mark of histone modification H3K4me1. Clustering analysis of enhancers according to their epigenetic marks revealed that about 40% of identified enhancers carried one or more epigenetic marks. Repressive H3K27me3 was frequently enriched with positive marks, H3K4me3 and/or H3K27ac, which together label enhancers. Intergenic enhancers were also predicted based on the location of DHS regions relative to genes, which overlap poorly with STARR-seq enhancers. In summary, we quantitatively identified enhancers by functional analysis in the genome of rice, an important model plant. This work provides a valuable resource for further mechanistic studies in different biological contexts.


Subject(s)
Acetylation , Base Sequence , Deoxyribonuclease I , Metabolism , Enhancer Elements, Genetic , Epigenesis, Genetic , Genes, Plant , Genomics , Methods , Histone Code , Genetics , Histones , Metabolism , Models, Genetic , Oryza , Genetics , Promoter Regions, Genetic , Genetics , Repetitive Sequences, Nucleic Acid , Genetics , Sequence Analysis, DNA , Transcription, Genetic
5.
The World Journal of Men's Health ; : 148-156, 2019.
Article in English | WPRIM | ID: wpr-742363

ABSTRACT

During the last decades the study of male infertility and the introduction of the assisted reproductive techniques (ARTs) has allowed to understand that normal sperm parameters do not always predict fertilization. Sperm genetic components could play an important role in the early stages of embryonic development. Based on these acquisitions, several epigenetic investigations have been developed on spermatozoa, with the aim of understanding the multifactorial etiology of male infertility and of showing whether embryonic development may be influenced by sperm epigenetic abnormalities. This article reviews the possible epigenetic modifications of spermatozoa and their effects on male fertility, embryonic development and ART outcome. It focuses mainly on sperm DNA methylation, chromatin remodeling, histone modifications and RNAs.


Subject(s)
Female , Humans , Male , Pregnancy , Chromatin Assembly and Disassembly , DNA Methylation , Embryonic Development , Epigenomics , Fertility , Fertilization , Histone Code , Infertility , Infertility, Male , Reproductive Techniques, Assisted , RNA , Spermatozoa
6.
Genomics & Informatics ; : e9-2019.
Article in English | WPRIM | ID: wpr-763794

ABSTRACT

In previous studies, we demonstrated that some sites in the first intron likely regulate gene expression. In the present work, we sought to further confirm the functional relevance of first intron sites by estimating the quantity of rare alleles in the first intron. A basic hypothesis posited herein is that genomic regions carrying more functionally important sites will have a higher proportion of rare alleles. We estimated the proportions of rare single nucleotide polymorphisms with a minor allele frequency < 0.01 located in several histone marks in the first introns of various genes, and compared them with those in other introns and those in 2-kb upstream regions. As expected, rare alleles were found to be significantly enriched in most of the regulatory sites located in the first introns. Meanwhile, transcription factor binding sites were significantly more enriched in the 2-kb upstream regions (i.e., the regions of putative promoters of genes) than in the first introns. These results strongly support our proposal that the first intron sites of genes may have important regulatory functions in gene expression independent of promoters.


Subject(s)
Alleles , Binding Sites , Chromatin , Epigenomics , Gene Expression , Gene Frequency , Histone Code , Introns , Polymorphism, Single Nucleotide , Transcription Factors
7.
Psychiatry Investigation ; : 654-661, 2019.
Article in English | WPRIM | ID: wpr-760983

ABSTRACT

OBJECTIVE: Depression is associated with various environmental risk factors such as stress, childhood maltreatment experiences, and stressful life events. Current approaches to assess the pathophysiology of depression, such as epigenetics and gene-environment (GxE) interactions, have been widely leveraged to determine plausible markers, genes, and variants for the risk of developing depression. METHODS: We focus on the most recent developments for genomic research in epigenetics and GxE interactions. RESULTS: In this review, we first survey a variety of association studies regarding depression with consideration of GxE interactions. We then illustrate evidence of epigenetic mechanisms such as DNA methylation, microRNAs, and histone modifications to influence depression in terms of animal models and human studies. Finally, we highlight their limitations and future directions. CONCLUSION: In light of emerging technologies in artificial intelligence and machine learning, future research in epigenetics and GxE interactions promises to achieve novel innovations that may lead to disease prevention and future potential therapeutic treatments for depression.


Subject(s)
Humans , Artificial Intelligence , Biomarkers , Depression , DNA Methylation , Epigenomics , Gene-Environment Interaction , Histone Code , Machine Learning , MicroRNAs , Models, Animal , Risk Factors
8.
Journal of Experimental Hematology ; (6): 615-620, 2018.
Article in Chinese | WPRIM | ID: wpr-690940

ABSTRACT

It has been increasingly recognized that the pathogenesis of B-cell lymphoma closely relates to the epigenetic disregulations. Epigenetics is a subdiscipline, which means heritable changes in gene expressions without alterations in the DNA sequence, and the DNA methylation, histone modification and miRNA maily were involved. Histone modification is the most important epigenetic modification, the researches showed that the aberrant histone modification is the important pathogenesis in B-cell lymphoma, especially the aberrant histone methylation and acetylation. In the meantime, the tumor can be treated by changing the epigenetic modification, which become a research hotpoint. This review summarizes the pathogenesis of B cell lymphoma and discusses the epigenetic treatment of B cell lymphoma mainly in terms of histone modification regulation for B cell development in the germinal center and mutation of histone madification enzymes.


Subject(s)
Humans , DNA Methylation , Epigenesis, Genetic , Histone Code , Histones , Lymphoma, B-Cell
9.
Journal of Breast Cancer ; : 233-243, 2018.
Article in English | WPRIM | ID: wpr-716699

ABSTRACT

Breast cancer has the highest incidence among all malignancies diagnosed in women. Therapies have significantly improved over the years due to extensive molecular and clinical research; in a large number of cases, targeted therapies have provided better prognosis. However, one specific subtype remains elusive to targeted therapies–the triple-negative breast cancer. This immunohistochemically defined subtype is resistant to both endocrine and targeted therapies, leading to its poor prognosis. A field that is of great promise in current cancer research is epigenetics. By studying the epigenetic mechanisms underlying tumorigenesis–DNA methylation, histone modifications, and noncoding RNAs–advances in cancer treatment, diagnosis, and prevention are possible. This review aims to synthesize the epigenetic discoveries that have been made related to the triple-negative breast cancer.


Subject(s)
Female , Humans , Breast Neoplasms , Breast , Diagnosis , DNA Methylation , Epigenomics , Histone Code , Incidence , Methylation , Prognosis , RNA, Untranslated , Triple Negative Breast Neoplasms
10.
Journal of Breast Cancer ; : 112-123, 2018.
Article in English | WPRIM | ID: wpr-714870

ABSTRACT

PURPOSE: The incidence and mortality of breast cancer is increasing worldwide. There is a constant quest to understand the underlying molecular biology of breast cancer so as to plan better treatment options. The purpose of the current study was to characterize the expression of histone deacetylases-3 (HDAC3), a member of class I HDACs, and assess the clinical significance of HDAC3 in breast cancer. METHODS: Quantitative real-time polymerase chain reaction, immunohistochemistry, and western blot analysis were used to examine messenger RNA and protein expression levels. The relationships between HDAC3 expression and clinicopathological variables were analyzed. MTT assays were used to detect cell proliferation. Glucose-uptake, lactate, adenosine triphosphate, and lactate dehydrogenase assays were employed to detect aerobic glycolysis. Chromatin immunoprecipitation was used to detect microRNA-31 (miR-31) promoter binding. RESULTS: Our data revealed that HDAC3 was upregulated in breast cancer tissue compared with matched para-carcinoma tissues, and high levels of HDAC3 were positively correlated with advanced TNM stage and N stage of cancer. Furthermore, overexpression of HDAC3 promoted breast cancer cell-proliferation and aerobic glycolysis. The functional involvement of HDAC3 was related in part to the repression of miR-31 transcription via decreased histone H3 acetylation at lysine K9 levels of the miR-31 promoter. Survival analysis revealed that the level of HDAC3 was an independent prognostic factor for breast cancer patients. CONCLUSION: Our findings revealed that HDAC3 served as an oncogene that could promote cell proliferation and aerobic glycolysis and was predictive of a poor prognosis in breast cancer. HDAC3 participated in the cell proliferation of breast cancer, which may prove to be a pivotal epigenetic target against this devastating disease.


Subject(s)
Humans , Acetylation , Adenosine Triphosphate , Blotting, Western , Breast Neoplasms , Breast , Cell Proliferation , Chromatin Immunoprecipitation , Epigenomics , Glycolysis , Histone Code , Histones , Immunohistochemistry , Incidence , L-Lactate Dehydrogenase , Lactic Acid , Lysine , Molecular Biology , Mortality , Oncogenes , Prognosis , Real-Time Polymerase Chain Reaction , Repression, Psychology , RNA, Messenger
11.
Chinese Journal of Biotechnology ; (12): 1831-1839, 2018.
Article in Chinese | WPRIM | ID: wpr-776286

ABSTRACT

Epigenetic modification, especially histone modification, plays an important role in maintaining plant genome stability, regulating gene expression and promoting regeneration in vitro. MtSERK1 is an important marker gene involved in establishing of embryogenic callus during in vitro regeneration of Medicago truncatula. In order to understand the regulation Epigenetic modification, especially histone modification, plays an important role in maintaining plant genome stability, regulating gene expression and promoting regeneration in vitro. MtSERK1 is an important marker gene involved in establishing of embryogenic callus during in vitro regeneration of Medicago truncatula. In order to understand the regulation relationship between dynamic histone modification and MtSERK1s expression during the processes of in vitro organogenesis, the expression of MtSERK1 was analyzed by qRT-PCR, and the modification status of H3K9me2, H3K4me3 and H3K9ac in the promoter region and different regions included in the gene body was analyzed by chromatin immunoprecipitation (ChIP). We found expression activation of MtSERK1 was related to the dynamic changes of histone H3K4me3 and H3K9ac in the 5' and 3' regions. This study will provide important theoretical guidance for understanding of the regulatory mechanism of MtSERK1 and also for establishing efficient genetic transformation system of Medicago truncatula.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Plant , Genome, Plant , Histone Code , Medicago truncatula , Genetics , Protein Kinases , Genetics , Regeneration
12.
Braz. j. med. biol. res ; 51(12): e7437, 2018. tab, graf
Article in English | LILACS | ID: biblio-974252

ABSTRACT

Pulmonary arterial hypertension (PAH), characterized by localized increased arterial blood pressure in the lungs, is a slow developing long-term disease that can be fatal. PAH is characterized by inflammation, vascular tone imbalance, pathological pulmonary vascular remodeling, and right-sided heart failure. Current treatments for PAH are palliative and development of new therapies is necessary. Recent and relevant studies have demonstrated that epigenetic processes may exert key influences on the pathogenesis of PAH and may be promising therapeutic targets in the prevention and/or cure of this condition. The aim of the present mini-review is to summarize the occurrence of epigenetic-based mechanisms in the context of PAH physiopathology, focusing on the roles of DNA methylation, histone post-translational modifications and non-coding RNAs. We also discuss the potential of epigenetic-based therapies for PAH.


Subject(s)
Humans , DNA Methylation/genetics , RNA, Untranslated/genetics , Epigenesis, Genetic/genetics , Histone Code/genetics , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/genetics , Pulmonary Artery/pathology , Down-Regulation/genetics , Up-Regulation/genetics , Ubiquitination/genetics , Molecular Targeted Therapy , Hypertension, Pulmonary/therapy
13.
Bol. méd. Hosp. Infant. Méx ; 74(4): 243-264, jul.-ago. 2017. tab, graf
Article in Spanish | LILACS | ID: biblio-888624

ABSTRACT

Resumen: La leucemia linfoblástica aguda (LLA) es el tipo de cáncer más frecuente en niños. Aunque se sabe que las alteraciones genéticas constituyen la base de la etiología de la LLA, se ha demostrado que no son suficientes para el desarrollo leucémico; son necesarias alteraciones adicionales, como las modificaciones epigenéticas. En la LLA se han identificado alteraciones de este tipo, como la metilación del DNA, la modificación de histonas y la regulación por RNAs no codificantes. La hipermetilación del DNA en regiones promotoras es una de las alteraciones epigenéticas más frecuentes en LLA: y conlleva al silenciamiento de genes que generalmente son supresores de tumor y, en consecuencia, contribuye a la leucemogénesis. También se han detectado alteraciones en proteínas remodeladoras de histonas, como la sobreexpresión de enzimas desacetilasas de histonas, así como alteraciones en enzimas acetil transferasas y metil transferasas. En la LLA también se altera la expresión de miRNAs, lo cual produce desregulación en la expresión de sus genes blanco. Estas modificaciones epigenéticas son eventos clave en la transformación maligna, e involucran la desregulación de oncogenes como BLK, WNT5B y WISP1 y de supresores de tumor como FHIT, CDKN2A, CDKN2B y TP73, lo que afecta diversos procesos celulares fundamentales que conllevan al desarrollo de LLA. Las alteraciones epigenéticas y genéticas contribuyen en conjunto al desarrollo y evolución de la LLA.


Abstract: Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. It is well-known that genetic alterations constitute the basis for the etiology of ALL. However, genetic abnormalities are not enough for the complete development of the disease, and additional alterations such as epigenetic modifications are required. Such alterations, like DNA methylation, histone modifications, and noncoding RNA regulation have been identified in ALL. DNA hypermethylation in promoter regions is one of the most frequent epigenetic modifications observed in ALL. This modification frequently leads to gene silencing in tumor suppressor genes, and in consequence, contributes to leukemogenesis. Alterations in histone remodeling proteins have also been detected in ALL, such as the overexpression of histone deacetylases enzymes, and alteration of acetyltransferases and methyltransferases. ALL also shows alteration in the expression of miRNAs, and in consequence, the modification in the expression of their target genes. All of these epigenetic modifications are key events in the malignant transformation since they lead to the deregulation of oncogenes as BLK, WNT5B and WISP1, and tumor suppressors such as FHIT, CDKN2A, CDKN2B, and TP53, which alter fundamental cellular processes and potentially lead to the development of ALL. Both genetic and epigenetic alterations contribute to the development and evolution of ALL.


Subject(s)
Child , Humans , Gene Expression Regulation, Neoplastic , Epigenesis, Genetic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , DNA Methylation , Gene Silencing , RNA, Untranslated/genetics , MicroRNAs/genetics , Histone Code/genetics
14.
Experimental & Molecular Medicine ; : e324-2017.
Article in English | WPRIM | ID: wpr-212096

ABSTRACT

Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action of methyltransferases (‘writers’) and demethylases (‘erasers’). In addition, distinct effector proteins (‘readers’) recognize specific methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.


Subject(s)
Biological Phenomena , Epigenomics , Histone Code , Histones , Lysine , Methylation , Methyltransferases , Tail , Writing
15.
Clinical and Experimental Reproductive Medicine ; : 59-81, 2016.
Article in English | WPRIM | ID: wpr-56135

ABSTRACT

It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research.


Subject(s)
Humans , Cues , DNA Methylation , Epigenomics , Family Characteristics , Histone Code , Inheritance Patterns , MicroRNAs , Nucleosomes , Reproductive Health
16.
Journal of Korean Medical Science ; : 1157-1166, 2015.
Article in English | WPRIM | ID: wpr-47713

ABSTRACT

Alteration of apoptosis is related with progression and recurrence of atypical meningiomas (AMs). However, no comprehensive study has been conducted regarding histone modification regulating apoptosis in AMs. This study aimed to determine the prognostic values of certain apoptosis-associated factors, and examine the role of histone modification on apoptosis in AMs. The medical records of 67 patients with AMs, as diagnosed during recent 13 yr, were reviewed retrospectively. Immunohistochemical staining was performed on archived paraffin-embedded tissues for pro-apoptotic factors (CASP3, IGFBP, TRAIL-R1, BAX, and XAF1), anti-apoptotic factors (survivin, ERK, RAF1, MDM2, and BCL2), and the histone modifying enzymes (MLL2, RIZ, EZH1, NSD2, KDM5c, JMJD2a, UTX, and JMJD5). Twenty-six (38.8%) patients recurred during the follow-up period (mean duration 47.7 months). In terms of time-to-recurrence (TTR), overexpression of CASP3, TRAIL-R1, and BAX had a longer TTR than low expression, and overexpression of survivin, MDM2, and BCL2 had a shorter TTR than low expression (P<0.05). Additionally, overexpression of MLL2, UTX, and JMJ5 had shorter TTRs than low expression, and overexpression of KDM5c had a longer TTR than low expression. However, in the multi-variate analysis of predicting factors for recurrence, low expression of CASP3 (P<0.001), and BAX (P<0.001), and overexpression of survivin (P=0.007), and MDM2 (P=0.037) were associated with recurrence independently, but any enzymes modifying histone were not associated with recurrence. Conclusively, this study suggests certain apoptosis-associated factors should be associated with recurrence of AMs, which may be regulated epigenetically by histone modifying enzymes.


Subject(s)
Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Histone Code/genetics , Histone Demethylases/genetics , Histone-Lysine N-Methyltransferase/genetics , Longitudinal Studies , Meningeal Neoplasms/genetics , Meningioma/genetics , Neoplasm Recurrence, Local/genetics
17.
Journal of Central South University(Medical Sciences) ; (12): 464-470, 2015.
Article in Chinese | WPRIM | ID: wpr-815314

ABSTRACT

OBJECTIVE@#To evaluate therapeutic eff ect of siRNA-HDAC5 on non-obese diabetic (NOD) mice by using small interference RNA (siRNA) technique to knock down the expression of HDAC5 in spleen CD4+ T cells.@*METHODS@#NOD mice, 12-weeks old, were randomly divided into 3 groups and were given normal saline, siRNA-Control or siRNA-HDAC5 through caudal vein injection. The spleens and other samples were collected at the 18th, 24th or 30th week. The blood glucose was tested by blood glucose meter. The urinary albumin and serum levels of IL-1, IL-6, IL-18, and TNF-α were detected by ELISA. The mRNA levels of CD11a, CCR5, and CX3CR1 in spleen CD4+ T cells were measured by quantitative Real-time PCR. The HDAC5 protein level in spleen CD4+ T cell was detected by Western blot.@*RESULTS@#Compared with the control group, the siRNA-HDAC5 group showed a significant decrease in blood glucose, urine albumin excretion rate, serum cytokine and the mRNA levels of CD11a, CCR5, and CX3CR1, consist with the decrease in protein level of HDAC5.@*CONCLUSION@#Inhibition of HDAC5 expression in NOD mice could effectively alleviate the onset and development of kidney damage caused by diabetes.


Subject(s)
Animals , Mice , CD11a Antigen , Metabolism , CD4-Positive T-Lymphocytes , Metabolism , CX3C Chemokine Receptor 1 , Cytokines , Blood , Diabetes Mellitus, Experimental , Genetics , Therapeutics , Enzyme-Linked Immunosorbent Assay , Histone Code , Histone Deacetylases , Genetics , Mice, Inbred NOD , RNA, Messenger , Metabolism , RNA, Small Interfering , Genetics , Therapeutic Uses , Random Allocation , Real-Time Polymerase Chain Reaction , Receptors, CCR5 , Metabolism , Receptors, Chemokine , Metabolism , Spleen , Cell Biology
18.
Journal of Rheumatic Diseases ; : 140-148, 2013.
Article in Korean | WPRIM | ID: wpr-104691

ABSTRACT

Epigenetics is defined as an inheritable effect that influences gene activity, but does not involve a change in DNA sequence. Epigenetic gene regulation has an essential role in determining individual gene function and activity in each specific cell type. Epigenetics includes four predominant mechanisms: DNA methylation, histone modification, nucleosome positioning and microRNA (miRNA). These mechanisms influence gene expression, cell differentiation, proliferation, DNA repair and replication. Epigenetic modifications are far more sensitive to environmental stimuli than DNA sequence alterations. Candidate gene approaches have identified a small set of genes that undergo epigenetic changes, such as aberrant DNA demethylation, histone modification, as well as regulation by miRNA in rheumatic diseases. It is well known that T cells from patients with SLE or RA, as well as synovial fibroblasts from individuals with RA, have sequences undergoing DNA hypomethylation and/or histone modifications. In addition, miRNA regulates the gene expression by pairing with its target mRNAs and is often deregulated in systemic rheumatic diseases. High-throughput approaches are necessary for screening the epigenetic alterations, and it is essential to screen the specific tissue and cell types that are relevant to the disease pathogenesis. Identification of cell-specific targets of the epigenetic deregulation in rheumatic disorders will provide clinical markers for the diagnosis, disease progression and response to therapy. Our understanding of epigenetics is in its infancy. New generation of pharmaceuticals, which manipulate the epigenome to the switch targeted genes on or off are under investigation. The new field of repairing or optimizing the epigenome through epigenetic modifier and/or diet is wide open.


Subject(s)
Humans , Autoimmune Diseases , Base Sequence , Biomarkers , Cell Differentiation , Diet , Disease Progression , DNA , DNA Methylation , DNA Repair , Epigenomics , Fibroblasts , Gene Expression , Histone Code , Histones , Mass Screening , MicroRNAs , Nucleosomes , Rheumatic Diseases , RNA, Messenger , T-Lymphocytes
19.
Journal of Periodontal & Implant Science ; : 111-120, 2013.
Article in English | WPRIM | ID: wpr-107347

ABSTRACT

Periodontitis is a common oral disease that is characterized by infection and inflammation of the tooth supporting tissues. While its incidence is highly associated with outgrowth of the pathogenic microbiome, some patients show signs of predisposition and quickly fall into recurrence after treatment. Recent research using genetic associations of candidates as well as genome-wide analysis highlights that variations in genes related to the inflammatory response are associated with an increased risk of periodontitis. Intriguingly, some of the genes are regulated by epigenetic modifications, supposedly established and reprogrammed in response to environmental stimuli. In addition, the treatment with epigenetic drugs improves treatment of periodontitis in a mouse model. In this review, we highlight some of the recent progress identifying genetic factors associated with periodontitis and point to promising approaches in epigenetic research that may contribute to the understanding of molecular mechanisms involving different responses in individuals and the early detection of predispositions that may guide in future oral treatment and disease prevention.


Subject(s)
Animals , Humans , Mice , DNA Methylation , Epigenomics , Genetic Variation , Histone Code , Inflammation , Metagenome , Periodontitis , Recurrence , Tooth
20.
Hanyang Medical Reviews ; : 33-38, 2013.
Article in Korean | WPRIM | ID: wpr-199837

ABSTRACT

Transcriptional regulation of a gene is not always correlated with genetic information inherited from parents because the transcription of specific genes is often governed by the modification of chromatin structure. The study of transcriptional regulation by modifying chromatin structure is well-known as "epigenetics". Several methods involved in the modification of chromatin structure have been developed in the mammalian species during evolution. Among those methods, methylations of specific DNA region or histone are often used to control specific gene transcription. Therefore, understanding the activity of proteins involved in DNA or histone methylation is an initial step to control the transcriptional activity of a specific gene. Polycomb group (PcG) proteins were known to be repressors of transcription of a specific gene by creating and maintaining methylation or ubiquitination of the specific region of histone. Dependent on the target histone, the activity of PcG proteins effects on the development of specific lineage cells or the activity of specific cell types. In this review, the function, expression and activity of PcG proteins related with the development or activation of T cells are discussed.


Subject(s)
Humans , Chromatin , DNA , Epigenomics , Genes, vif , Histone Code , Histones , Methylation , Parents , Polycomb-Group Proteins , Proteins , T-Lymphocytes , Ubiquitin , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL